Some of the world's most important
discoveries -- penicillin, vulcanized rubber and Velcro, to name a few
-- were made by accident. In fact, it's been said that upward of half of
all scientific discoveries are by chance.
Add vortex ring freezing to that long list of "accidents."
Duo An, a doctoral student in the labs of both professor Dan Luo and
assistant professor Minglin Ma, in the Department of Biological and
Environmental Engineering, was an undergraduate from China doing an
internship at Cornell when he stumbled upon a phenomenon that has the
potential to greatly improve cell-free protein production and cell
delivery, particularly for Type 1 diabetes patients.
A group headed by Luo and Ma has published the paper, "Mass
production of shaped particles through vortex ring freezing," which was
released online Aug. 4 in Nature Communications. An is lead author.
Vortex rings are ubiquitous in nature -- a mushroom cloud of smoke is
one example -- and the ring's evolution exhibits a rich spectrum of
complicated geometries, from spherical to teardrop to toroidal
(doughnut-shaped). The researchers used these features to control and
mass produce inorganic and organic particles via an electrospraying
process, whereby a multitude of vortex ring-derived particles (VRPs) can
be produced, then frozen at precise time points. The group reported
they could produce 15,000 rings per minute via electrospraying.
They found controlling the shape and speed of the spray, as well as
the speed of the chemical reaction, can yield different structures.
"We can tune both of these timescales, and control at which stage we
can freeze the structure, to get the results we want," An said.
While working in Luo's lab during a summer internship, An was making
nanoclay hydrogels -- injecting one solution into another to create a
gel. But for this particular procedure, instead of direct injection, he
dripped one solution into another. When the first solution entered the
second, it created vortex-ring particles.
It wasn't until two years later, while working in Ma's lab, that he
recalled the vortex rings he'd created and wondered if that concept
could be applied to Ma's work with microcapsules and cell therapy. The
Ma lab focuses on cell delivery for Type 1 diabetes patients.
Ma admitted that the concept of using a doughnut-shaped encapsulation hadn't occurred to him, but made perfect sense.
"We knew the concept that a doughnut shape is better, but we never thought of making it until we saw it [from An]," Ma said.
An advantage of the doughnut-shape encapsulation over a
spherical-shaped one is shorter diffusion distance -- the distance the
encapsulated particle must travel to escape the capsule -- while at the
same time maintaining a relatively large surface area.
This concept could pave the way for other as-yet-unknown applications of vortex ring freezing, according to Luo.
"Our hope is that this type of material in these shapes can be used
much more extensively in other labs for whatever they're trying to do,"
he said. "There is a whole field devoted to just particles, but by
default, they are all thinking in terms of spherical particles.
Hopefully, this will add to that field of study."
Ma, who earlier this year won a Hartwell Individual Biomedical
Research Award for his work on juvenile diabetes, cited the work of
collaborators Ashim Datta, professor of biological and environmental
engineering, and Paul Steen, the Maxwell M. Upson Professor of
Engineering in the Robert Frederick Smith School of Chemical and
Biomedical Engineering. Datta's lab did the simulation work, and Steen's
group provided key theoretical input.
"Their contributions put this work on much more solid ground," Ma
said. "We now better understand the mechanism behind it, and can more
purposefully design these particles in the future.
0 comments:
Post a Comment